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Computational study of the band broadening in two-dimensional etched
packed bed columns for on-chip high-performance liquid chromatography
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Abstract

The chromatographic performance of several straightforward two-dimensional etched packed bed column lay-outs (equilaterally staggered
arrays of, respectively, circular, hexagonal, and diamond-like pillars) has been compared using commercial computational fluid dynamics
software. In all cases, the bed porosity was kept atε = 0.4 and a retained component with zone capacity ratiok′′ = 2 was considered. Exploring
the use of six different possible characteristic dimensions to bring the Van Deemter plots of the three different considered particle shapes into
agreement, none of them yielded a perfect agreement. Using the pillar volume-based equivalent cylinder diameter (deq) as the characteristic
dimension, the diamond-like pillars yielded a significantly smallerhmin value than the cylinders and the hexagons (hmin

∼= 0.74 for the former
versushmin

∼= 0.83 for the two latter). Including the flow resistance into the analysis, it was found that the “hydrodynamic” shape of the
particles has an important influence on the separation impedanceE. The more axially elongated diamond pillars yielded anEmin number as
smallEmin = 180 (for a retained component withk′′ = 2), i.e. about 40% smaller than the cylinders and the hexagons (Emin = 300–330).
The obtainedhmin andEmin values are also significantly smaller than the values often cited for the best possible packed bed HPLC columns.
We believe this is a consequence of the assumed perfect homogeneity of the etched structures, and hence hints at the potential benefits of
perfectly ordered chromatographic columns, as was already inferred by Knox [J. Chromatogr. A 831 (1999) 3; 960 (2002) 7] and He et al.
[Anal. Chem. 70 (1998) 3790].
© 2004 Elsevier B.V. All rights reserved.

Keywords:Band broadening; Computational fluid dynamics; Packed columns; Etched columns; Mathematical modelling; Computer simulation

1. Introduction

In two relatively recent papers, Knox[1,2] mentioned
the use of two-dimensional (2D) etched columns as an at-
tractive possibility to obtain significantly smaller reduced
plate heights than what is possible with the best possible
packed bed columns. He thereby especially foresaw a large
possible reduction of theA term, due to the high degree
of regularity with which the packings can be machined.
His suggestion in fact follows upon the ground-breaking
work of He et al.[3] who first pointed out the possibility
of micro-machined packed columns to the chromatographic
community. Apart from the increased packing homogeneity
and the superfluity of frits, the micro-machined column con-
cept also opened the road to a quasi-unlimitedly large va-
riety of possible particle shapes and particle arrangements,
a possibility which was up to then quasi unexplored in the
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field of LC. Using an argument based on an optimisation
of the number of trans-channel coupling points, a densely
packed array of cubic structures was suggested as the ideal
column format[3,4]. This was subsequently confirmed un-
der electrically-driven flow conditions, but the results were
found to depend strongly on imperfections of the etched
packing structures[5]. Tests under pressure-driven condi-
tions have not been carried out yet, but it can be expected
that in that case, the trans-channel coupling points will play
an even more important role.

Given the large degree of design freedom (structure shape,
packing density, relative positioning of the etched struc-
tures, etc.), the lack of a well-established band broadening
expression, and the large experimental cost of a broad-scale
explorative study, the present paper reports on the use of a
commercial computational fluid dynamics (CFD) software
package to study the band broadening in 2D periodic chro-
matographic packings. With the exponential increase in
computational power, it has now namely become possible
to solve the complete impulse and species conservation bal-
ances determining the flow and band broadening processes
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in chromatographic columns in its full detail and without
having to make any simplifying assumption. Combining
advanced grid generation algorithms (used to divide the
flow domain in a large number of small calculation cells
wherein the complete impulse and species balances are
solved numerically) with a powerful numerical solver and a
wide range of data post-processing possibilities (graphical
representation, calculation of averaged values, etc.), CFD
packages are especially suited to calculate the velocity field
in complex geometries and provide unique data on the flow
and species transport on scales which are inaccessible to
experimental measurement methods. CFD simulations have
therefore also become an increasingly used design tool in
the lab-on-a-chip field[6,7] and for the analysis of the flow
pattern in chromatographic columns[8–11]. Since the flow
in an LC column is without any doubt purely laminar, and
is hence purely deterministic, the CFD results can be made
fully accurate, provided care is taken that the obtained
results are independent of the grid shape and size.

The specific aim of the present study was three-fold: (i)
obtain information on the theoretical plate heights and Knox
parameters which can be achieved in 2D etched columns;
(ii) gain insight in the selection of the appropriate charac-
teristic dimensions bringing the flow resistance and band
broadening of differently shaped chromatographic particles
into agreement; and (iii) investigate the influence of the par-
ticle shape on the minimal plate height and the separation
impedance (cf. theE number). Although such columns do
not exist yet (the COMOSS structures used in Regnier’s
group have non-porous pillars), the present study focuses
on porous pillar systems because we wanted to compare the
obtained plate heights and separation impedances directly to
real (three-dimensional, 3D) packed bed columns contain-
ing porous particles.

Fig. 1. Overview of the unit cells of the considered pillar arrangements for the three different considered pillar shapes: (a) cylinders; (b) equilateral
hexagons; (c) diamond-like pillars. For each pillar shape, three of the six cases considered inTable 2are represented.

2. Considered geometries and performance comparison
criteria

At present, we have limited our study to three different
pillar shapes (cf.Fig. 1): cylinders, equilateral hexagons and
diamonds with adax/dlat = √

3 diagonal ratio. To focus en-
tirely on the influence of the particle shape, other geometrical
parameters such as the bed porosity and the pillar arrange-
ment were kept constant: in all considered cases, the bed
porosity was exactly equal toε = 0.4, and the pillars were
always arranged in an equilateral staggered configuration,
i.e. the centre points of neighbouring pillars are situated on
the corners of an equilateral triangle. With these restrictions,
the unit cell domain retains the same width over length ratio
(ddom/Ldom) for all three considered particle shapes. The ra-
tio also remains unchanged when the dimensions of a given
particle are changed (cf. the different cases shown inFig. 1).
The imposed geometrical restrictions also limit the number
of diamond shapes which can be selected. Square-shaped
pillars, for example, do not fit into an equilaterally staggered
configuration.Table 1gives an overview of the geometrical
relations between the characteristic dimensions of the pil-
lar arrays on the one hand and the main characteristic di-
mension (diameterdp for cylinders and side lengths for the
hexagons and diamonds) of the three different pillar shapes
on the other hand.

One of the initial questions immediately arising when
intending to explore the possibilities of alternative particle
shapes is what characteristic dimensiondref needs to be
considered to make a correct comparison between the dif-
ferent systems, i.e. to bring the reduced Van Deemter plots
for the different considered geometries into agreement. For
a packed bed of particles or for a cylindrical pillar sys-
tem, the selection ofdref is obvious, but for non-circular or
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Table 1
Geometrical parameter values for the different considered pillar shapes in
relation to their main characteristic dimension (diameterdp for cylinders
and side lengths for the hexagons and diamonds) and the bed porosity
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a Values numerically calculated in the present study (see text).

non-spherical particles this is no longer the case. This is a
problem which is, for example, also encountered[12–14]
when trying to bring the band broadening in monolith
columns into agreement with that in packed beds.

To help find the appropriate characteristic dimension for
the presently considered 2D packings, six different straight-
forward cases have been considered: case 1, wherein the
pillars have the same maximal lateral width (dlat); case 2,
wherein the minimal distance (df ,min) between the pillars is
identical; case 3, wherein the domain size (ddom) is identical;

Table 2
Relations between a number of important characteristic dimensions for the six different considered cases

dlat df ,min ddom dFR,eq Sp/Vp df ,mean P Ap deq dax Sp/Vf

Cylinders 1.000 0.229 1.229 1.000 4.000 0.201 3.142 0.785 1.000 1.000 6.000

Hexagons
Case 1 1.000 0.291 1.291 1.091 4.412 0.207 3.466 0.825 1.050 1.155 6.619
Case 2 0.787 0.229 1.016 0.859 3.472 0.163 2.728 0.649 0.827 0.909 5.209
Case 3 0.952 0.277 1.229 1.039 4.200 0.197 3.300 0.785 1.000 1.100 6.301
Case 4 0.916 0.267 1.183 1.000 4.042 0.190 3.176 0.756 0.962 1.059 6.064
Case 5 0.907 0.264 1.171 0.990 4.000 0.188 3.143 0.748 0.952 1.048 6.001
Case 6 0.973 0.283 1.256 1.060 4.285 0.201 3.367 0.801 1.020 1.122 6.429

Diamonds
Case 1 1.000 0.252 1.292 1.271 5.095 0.230 4.001 0.825 1.050 1.732 7.642
Case 2 0.908 0.229 1.174 1.155 4.628 0.209 3.634 0.749 0.954 1.573 6.942
Case 3 0.952 0.240 1.229 1.210 4.850 0.219 3.809 0.785 1.000 1.649 7.275
Case 4 0.787 0.198 1.017 1.000 4.008 0.181 3.148 0.649 0.826 1.363 6.012
Case 5 0.785 0.198 1.014 0.998 4.000 0.181 3.141 0.647 0.825 1.360 6.000
Case 6 0.874 0.220 1.129 1.111 4.451 0.201 3.496 0.720 0.918 1.513 6.677

The underlined values refer to the dimension kept constant in the given case.

case 4, wherein the pillar dimensions are selected such that
identical bed permeabilities are obtained; case 5, wherein
the pillars have the same specific outer surface (a = Sp/Vp);
and case 6, wherein the mean flow-through pore size is kept
constant (df ,mean). The relative relations between the differ-
ent considered cases are given inTable 2. Cases 1–3 are also
schematically represented inFig. 1.

As can be noted fromFig. 1, the domain size (ddom) is
defined as the distance between the centre points of two
neighbouring pillars. It should be noted here that, within the
presently considered geometry (i.e.ε = 0.4 and an equilat-
eral staggered pillar arrangement for all three considered pil-
lar shapes), the condition of a constant domain size (case 3)
is only possible if the cross-sectional area (Ap) of the individ-
ual pillars is also equal. Case 3 hence also corresponds to the
case of identical cross-sectional pillar area. For the hexagons
and diamonds, it is under the condition of case 3 hence
straightforward to define an equivalent cylinder diameter
(deq) as the diameter of the cylinder having the same cross-
sectional area as the hexagon or diamond with givenAp:

deq =
√

4

π
Ap (1)

All this information is also contained inTable 2: the rows
for case 3 (constantddom) also have identical entries in the
columns fordeq and for the cross-sectional pillar areaAp.

In case 6, the different pillar systems are compared on the
basis of an identical mean flow-through pore sizedf ,mean.
Finding a mathematical expression for the latter is, how-
ever, not straightforward to find. In the present study, we
defineddf ,mean as the ratio of the cross-sectional pore area
Af (cross-section taken in thexy-plane) to the pore length.
The cross-sectional pore areaAf can simply be calculated
from the total domain size usingAf = 0.5Adomε. The fac-
tor 0.5 stems from the fact that the fluid zone in the unit
cells depicted inFig. 1 in fact contain two pores, just like it
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contains two pillars. The pore length is then subsequently
estimated from the product of the domain lengthLdom and
the pore tortuosityτ. With these geometrical data, it is now
obvious to calculate the mean pore diameter as the ratio of
the cross-sectional area and its tortuous path length, yield-
ing:

df ,mean= 1

2

Adomε

Ldomτ
(2)

The calculation ofτ (values given in the bottom row of
Table 1) requires the solution of the velocity field and is
discussed inSection 4.1. The definition and calculation of
dFR (case 4) is given inSection 4.1as well.

All different considered cases are compared on the basis
of two widely used criteria: the minimal reduced plate height
(hmin), and the separation impedance (E), defined as:

E = H2

Kv
= h2φ (3)

whereinKv is the column permeability:

Kv = u0ηL

�P
(4)

which is often also expressed in terms of the flow resistance
factorφ defined as:

φ = d2
ref

Kv
(5)

3. Numerical solution and data processing methods

Flow domains corresponding to the geometries described
in Fig. 1andTables 1 and 2were designed using a commer-
cial CAD program (GAMBIT v.2), acting at the same time
as the grid generator for the FLUENT 6.0 CFD software
package used to solve the exact flow and species diffusion
equations governing the complete chromatographic process
[15]. The exact dimensions of the considered flow domains
can be retrieved by multiplying the data given inTable 2by
a factor 3× 10−6 m, i.e. the simulations carried out for case
3, for example, all corresponded to pillars with an equivalent
cylinder diameter ofdeq = 3�m.

For each case, first a representative unit cell (cf. the dark
grey areas inFig. 1) was designed, which was then sub-
sequently replicated and translated to form a flow domain
consisting of a series connection of 10 unit cells. So-called
velocity-inlet and pressure-outlet conditions were, respec-
tively, imposed at the front and end plane of the flow domain.
Along the side-walls, a zero normal concentration gradient
condition was imposed. With this condition of symmetry,
the considered flow domain behaves as if it were embed-
ded in an infinitely wide structure. For the same reason, the
parts of the side-walls occupied by the fluid zone were sub-
jected to a slip flow boundary condition (zero normal veloc-
ity gradient) to calculate the velocity field. At the surfaces
of the porous particles, a no-slip boundary condition (u = 0

at the wall surface) was imposed to account for the flow ar-
resting effect of the solid pillar surfaces. Further setting up
the problem for the CFD software, the pillar zones were de-
fined as porous zones. Within the software program, porous
zones are attributed a freely selectable flow resistance fac-
tor, but this was always set at infinity in the present study
to mimic the absence of any intra-particle convection. Each
individual pillar zone was subsequently also defined as be-
ing embedded in a continuous fluid zone, corresponding to
the total surface area of the flow domain which is not oc-
cupied by the pillars. The effect of the internal porosity of
the pillar zones can easily be reproduced, as the software
package has a built-in function allowing to attribute a given,
freely selectable, internal porosity to the porous zones. To
approximate the conditions in a traditional packed bed col-
umn, a value ofεint = 0.5 has been assumed in all presented
calculations.

The software package was further extended with a number
of self-written numerical routines to simulate the diffusion
and adsorption processes inside the porous pillars. A first
user defined function was written to mimic the effect of
the slow intra-particle diffusivity. The function was used
to attribute the species entering the stationary phase zones
a diffusion coefficient different (i.e. smaller) from that in
the fluid zone. In all presented cases, the stationary phase
diffusion coefficientDs was always put at 5× 10−10 m2/s,
whereas the mobile zone diffusion coefficient was always
set atDm = 1 × 10−9 m2/s. The liquid phase viscosity was
always put atη = 10−3 kg/(m s).

A second user defined function was written to represent
the selective adsorption (retention) of the species in the sta-
tionary phase zones. This process was mimicked by subject-
ing the species present in the porous pillar zones to a re-
versible chemical reaction transforming the freely diffusing
species Y into a species Y∗ with identical physical proper-
ties but with a zero diffusivity, as to express its adsorbed
state:

Y (freely diffusing)
k1
�
k2

Y∗ (adsorbed) (6)

By changing the ratioK of the forward and backward rate
constant, different adsorption equilibria can be imposed,
which in turn corresponds to a variation of the phase and
zone retention factors (k′ andk′′). In all the presented cal-
culations,K was always selected such that a zone retention
factor k′′ = 2 was obtained. From the known external (ε)
and internal (εint) porosities, the zone retention factork′′

0 of
the unretained species (i.e. species for whichK = 0) can
easily be calculated to be given by:

k′′
0 =

(
1 − ε

ε

)
εint = 0.75 (7)

All calculations were carried out on Dell personal computers
with Intel Xeon 2 GHz processor, and equipped with 2 GB
RAM. To ensure that the velocity fields calculated by the
CFD software were grid-independent, i.e. were independent
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of the degree of discretisation of the flow domain, a veloc-
ity gradient adaptation of the grid was performed after the
initial 100–300 iteration steps and before running another
200 iterations. The change in the velocity field values and
pressure drop was smaller than 0.2%, small enough to con-
clude that the solutions are grid-independent and sufficiently
converged. To ensure that the calculated species transport
rates are grid- and time step-independent, a range of differ-
ent grid sizes has been explored. It was found that, for the
entire simulation domain (i.e. 10 unit cells in series), the
use of about 25 000 cells was sufficient to achieve an ac-
curacy of approximately 0.2% on the resulting plate height
value.

The latter was obtained by monitoring the radially av-
eraged species concentration response to the virtual injec-
tion of a plug of tracer species at nine successive detection
planes, each positioned at the interface between two succes-
sive unit cells. From these concentration response curves, the
peak migration time and the peak variance were assessed by
numerically calculating the zeroth-, first- and second-order
moment of the obtained break-through curves, using:

tR,i =
∫ +∞

0 Cit dt∫ +∞
0 Ci dt

(8)

σ2
t,i =

∫ +∞
0 Cit

2 dt∫ +∞
0 Ci dt

− t2R (9)

From Eq. (8), the phase and zone retention factors (k′ and
k′′) can be calculated as:

tR,i = Li

u0
(1 + k′) = Li

um
(1 + k′′) (10)

whereinum is the mean axial component of interstitial fluid
velocity, andu0 the migration velocity of the non-retained

Fig. 2. Comparison of the calculated velocity fields for the three different considered pillar shapes under the condition of an identical domain size and
cross-sectional particle area (case 3). The streamlines are coloured in relation to the local velocities.

species. Both characteristic velocities are related by the zone
retention factork′′

0 of the unretained species:

u0 = um

1 + k′′
0

(11)

From Eqs. (8) and (9), the theoretical plate height values
could be directly calculated using:

H =
σ2
t,j − σ2

t,i

(tR,j − tR,i)2
Lij (12)

To validate the adopted modelling and flow simulation tech-
niques, we first calculated the chromatographic band broad-
ening for a case for which an analytical solution is available.
Considering an open-tubular channel with flat-rectangular
cross-section with a thicknessd = 2�m and coated with
a stationary phase with thicknessd = 1�m and a zone re-
tention factor ofk′′ = 2, and refining the employed com-
putational grid size and time step such that they no longer
influenced the end result, a perfect agreement with the the-
oretical Golay equation was obtained. With this validation,
the simulation of the 2D etched packing structures could be
attacked with confidence.

4. Results and discussion

4.1. Velocity fields and flow resistance

Fig. 2shows the calculated velocity fields for the three dif-
ferent considered pillar shapes under the conditions of case
3. During the entire study, all simulated velocity fields were
always characterised by calculating the volume-averaged ve-
locity magnitude〈u〉, the volume-averagedx-component of
the velocity〈ux〉, the total volumetric flow rateQ passing
through each cross-sectional plane of the unit cell and the
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total pressure gradient�P/L. It should be noted here that the
〈ux〉 velocity values correspond to the linear interstitial flow
velocity traditionally used in pressure drop correlations and
that the ratio of the flow rateQ (with dimensions m2/s, since
we are considering a 2D case) and the total width (ddom) of
the unit cell corresponds to the superficial velocityusf:

usf = Q

ddom
(13)

The volume-averaged velocity magnitude〈u〉 is a measure
for the true interstitial velocity.

When considering the results of a CFD study, as many
validity checks as possible have to be made to ensure that
the appropriate numerical solution parameters (number and
shape of cells, employed residual-drop criterion, values of
the relaxation factors employed in the numerical scheme,
etc.) have been selected. In the present study, several of
such checks have been incorporated. From the theory of
hydrodynamics, it is, for example, a well-known fact[16]
that the〈u〉 value is related to the〈ux〉 value via the bed
tortuosityτ:

τ = 〈u〉
〈ux〉 (14)

while the superficial velocityusf and the volume-averaged
x-component of the velocity〈ux〉 are in turn related by the
bed porosity:

ε = usf

〈ux〉 (15)

To verify the accuracy of our calculations, it was therefore
always investigated whether the bed porosity calculated via
Eq. (15)agreed with the bed porosity calculated on the basis
of the dimensions of the considered flow domain. When the
grid is too coarse, there might be a considerable discrepancy.
In the cases presented here, the agreement was, however, al-
ways better than 1%. Another validity check was based on
the bed tortuosityτ, for this quantity should namely depend
exclusively on the geometry of the flow-through pore sys-
tem and should hence be independent of the imposed veloc-
ity. Upon verification, it was indeed found that theτ values
calculated on the basis ofEq. (14)were identical to within
0.5% when considering simulations performed for different
velocities but in the same unit cell. Since the relative di-
mensions of the flow domains remain identical when pass-
ing from cases 1 to 6 for, it was also not surprising to find
that all cases related to the same particle shape led to the
same tortuosity. The obtainedτ values are listed inTable 1
(bottom row).

At this point, it is also interesting to note that the cylindri-
cal and the hexagonal pillars yield approximately the same
value forτ (τ = 1.221 for the cylinders versusτ = 1.248
for the hexagons). This can readily be understood from the
fact that the flow around the cylindrical pillars apparently
spontaneously organises itself in a hexagon-like flow pat-
tern, as can be noted from the calculated flow field inFig. 2a.
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Fig. 3. Plot of�P vs. u0 for the three different considered pillar shapes
(case 3). Using the straight line slopes to calculateKv from Eq. (4), the
following values are obtained:Kv = 2.08 × 10−15 m2 (�, cylinders);
Kv = 2.25 × 10−15 m2 (�, hexagons);Kv = 3.05 × 10−15 m2 (�,
diamonds).

The slightly smallerτ value for the cylindrical pillars can be
understood from the fact that the corners of the hexagonal
flow pattern are slightly more rounded than in the hexago-
nal pillar case. Theτ value for the diamonds is significantly
smaller than for the two other pillar shapes (τ = 1.12 ver-
susτ = 1.22–1.24). This can be understood from the fact
that the diamonds are clearly more axially elongated than
the two other bodies. This is also reflected in the calculated
flow field shown inFig. 2c.

Yet another validity check was based on the expected lin-
ear relation (cf. Darcy’s law for the laminar flow through
porous media) between the calculated pressure drop per
length value (�P/L) and the velocityu0 of the unretained
peak for simulations carried out on the same unit cell. As
can be ascertained fromFig. 3, this is indeed the case.Fig. 3
(established for case 3) also clearly shows that a compar-
ison on the basis of an identical domain size and particle
cross-sectional area yields a different slope for the�P/L
versusu0 lines for each of the considered pillar shapes. As a
consequence, the correspondingKv values calculated on the
basis ofEq. (4) yield a different value for the three differ-
ent pillar shapes (data given in the caption ofFig. 3). This
also implies that when calculating the flow resistance on the
basis of the equivalent cylinder diameterdeq:

φcase 3=
d2

eq

Kv
(16)

three different values forφ are obtained (seeTable 3). As
can be noted, the difference between the flow resistance of

Table 3
Summary of the most relevant chromatographic performance parameters

dax/dlat φ Pemin hmin A B C Emin

Cylinders 1 480 5.5 0.833 0.064 2.060 0.061 333
Hexagons 1.154 445 5.5 0.830 0.058 2.025 0.065 306
Diamonds 1.732 328 6 0.737 0.027 2.089 0.056 178



P. Gzil et al. / J. Chromatogr. A 1030 (2004) 53–62 59

0

0.02

0.04

0.06

0.08

0.10

0.12

5.3 10.6 16.0 21.3 26.6 31.9 37.3 42.6 47.9 53.2
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

x (µm)

2
t (s2)tr (s) 

Fig. 4. Evolution ofσ2
x (full lines) and tr (dashed lines) withx for one

of the considered cylindrical pillar domains (case 1,u0 = 0.93 mm/s).

the cylinders and hexagons is relatively small, whereas the
diamonds yield a significantly smaller flow resistance (φ =
328 versusφ = 440–480 for the cylinders and hexagons).
This is again a reflection of the much better streamlined
shape of the diamonds (cf.Fig. 2).

To bring theKv data into agreement, an equivalent cylin-
der diameterdFR can be defined as the diameter of the cylin-
ders yielding the same flow resistance as the considered
hexagons and diamonds. FromEq. (16), dFR is then found
as:

dFR,eq = √
φcase 3Kv,case 3 (17)

The thus obtained values are given inTable 1. Comparing
now the entries for case 4 (flow domains with identicaldFR)
in Table 2with the entries for the other cases, it can be noted
that the case of an identical flow resistance does not corre-
spond to any of the other cases, although one might have ex-
pected that the case with identical mean flow-through pore
diameter (case 6) would have come close to yielding the
same flow resistance. Obviously this is not the case, reflect-
ing the fact that the flow resistance is not only determined
by a mean flow-through diameter but is also influenced by
the particle shape and theSp/Vf ratio.

4.2. Species transport and band broadening calculations

For the calculation of the species transport, the most im-
portant validity check was on the variation of the peak vari-
anceσ2

x with the distancex in the flow domain. According
to the theory of chromatography, this value is namely ex-
pected to vary in a linearly proportional way withx [15]. As
can be noted from the example inFig. 4, this is obviously
the case.Fig. 4 also shows that the evolution of the mean
peak passage time with the distance is also perfectly linear.
Comparing these passage times with the expected passage
times calculated on the basis ofEq. (11), the agreement was
always closer than 1%, yielding an additional validity check
for our calculations.

Fig. 5 shows the obtained plate height versusu0 curves
for all six considered cases. As can be noted, none of the

six considered cases corresponds to a condition wherein the
three pillar shapes yield the same Van Deemter curve. This
implies that none of the presently considered characteristic
dimensions can be used as a particle shape-independent basis
for the reduction of theoretical plate heights. The pillar sys-
tem yielding the lowest plate heights also obviously varies
from case to case, although for two highly relevant cases, i.e.
the case with identical domain size and cross-sectional pil-
lar area (case 3) and the case with identical flow resistance
(case 4), the diamond-like pillars yield plate heights which
are obviously smaller than the cylinders and the hexagonal
pillars.

Given that one of the cases yielding the closest agree-
ment was the identical domain and equivalent particle size
case (case 3), all curves were reduced on the basis ofdeq,
according to:

h = H

deq
and ν0 = u0

deq

Dm
(18)

Since all the considered cases and flow domains are obtained
by linearly scaling thex- andy-dimensions, leaving the rel-
ative dimensions unaltered, it is straightforward to expect
that when the six different Van Deemter curves obtained for
a given pillar shape are reduced on the basis of their own
deq value (which can be retrieved from thedeq column in
Table 2), all reduced curves should coincide. This has been
verified and was indeed the case for all three considered pil-
lar shapes. As can be noted fromFig. 6, the diamond-like
pillars yield a notably smaller minimal reduced plate height
than the cylindrical and hexagonal pillars, and also dis-
play a slightly smaller slope in theC-term region of the
plot.

To investigate this further, the simulated curves shown in
Fig. 6have been fitted with Knox’ well-established reduced
plate height expression:

h = Aν
1/3
0 + B

ν0
+ Cν0 (19)

Eq. (19)has recently also been confirmed as one of the best
fitting correlations during a numerical study of a simulated
random packed bed of spheres[8]. The fittings were carried
out using the least squares function of Microsoft Excell. The
results are shown inTable 3, confirming the slightly smaller
C value of the diamond-like pillars. The pillar shape, how-
ever, especially seems to have a strong influence on theA
term, again in favour of the diamonds (A ∼= 0.06 for the
cylinders and hexagons versusA ∼= 0.03 for the diamonds).
A clear-cut explanation for this finding is currently not avail-
able. As expected, the values forB are nearly completely
independent of the pillar shape. Further considering the ob-
tained Knox parameters, it is interesting to note that theB
andC terms are identical to those traditionally cited for the
best possible packed bed[1]. Especially the fact that similar
C values are obtained suggests that the currently used char-
acteristic dimension (deq) provides a good basis of compari-
son between a 3D packed bed and a 2D pillar array column.
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Fig. 5. Comparison of the obtained Van Deemter plots for the three different considered pillar shapes: (a) case 1: identicaldlat; (b) case 2: identical
df ,min; (c) case 3: identicalddom, deq and Ap; (d) case 4: identicaldFR,eq; (e) case 5: identicalSp/Vp; (f) case 6: identicaldf ,mean. (�) Cylinders; (�)
hexagons; (�) diamonds.

The A term values on the other hand are extremely smaller
than theA = 0.5–1 values typically cited for a packed bed
column [17]. Since theA term is known to represent the
contribution to band broadening stemming from the irreg-
ularities of the packing, the present results can be consid-
ered as a strong quantitative argument in favour of the use
of highly ordered chromatographic columns. The qualitative
argumentations of Knox[1,2] and He et al.[3], lying at the
basis of the present study are hence fully substantiated by
the present quantitative results.

It should be recalled here that the present findings are
independent of any trans-channel coupling effect[15], as

the number of flow coupling points is identical for the three
different pillar systems considered inFig. 7.

4.3. Separation impedance

Since it does not require the selection of a characteristic
dimension (cf. the first two members ofEq. (3), comparing
columns on the basis of theE number is not as difficult as a
comparison based on the reduced plate height. Furthermore,
since theE number is a direct measure[17] for the analysis
time under the condition of a limited pressure drop (which is
always the case when pursuing the minimal analysis time),
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Fig. 6. Reduced Van Deemter plots and fittings with Knox equation (solid
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Fig. 7. Separation impedance as a function of the reduced velocity for
the three considered pillar shapes: (�) cylinders; (�) hexagons; (�)
diamonds.

theE number also provides a direct important practical and
economic basis of comparison. In this respect, it is highly
interesting to note that the presently considered 2D array
columns yieldE numbers which are more than 10 times
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Fig. 8. Emin vs. the dlat/dax ratio of the cylinders (dlat/dax = 1), the
hexagons (dlat/dax = 1.15) and the diamonds (dlat/dax = 1.73).

smaller the best possible packed bed column for the same
bed porosity ofε = 0.4, i.e. without changing the mass
loadability and the retention capacity of the system.

Considering theEmin values given inTable 3, we found
it instructive to note that there seems to be a clear relation
between the degree of axial elongation of the particles (ex-
pressed here by thedlat/dax ratio) and the resultingE number.
For the three considered cases, even a linear relationship is
obtained (Fig. 8), although it can easily be inferred that this
trend cannot be universally valid.

5. Conclusions

The present theoretical study has allowed to gain more
insight in the optimal particle shape for 2D etched packed
bed columns. Keeping the other geometrical parameters (bed
porosity, pillar arrangement) constant, it is found that the
“hydrodynamic” shape of the particles has an extremely
large impact on theEnumber. The more axially elongated di-
amond pillars yield anEmin number as smallEmin = 180 (for
a retained component withk′′ = 2), i.e. about 40% smaller
than the cylinders and the hexagons (Emin = 300–330 for
k′′ = 2).

Both the theoretical plate heights (hmin ∼= 0.7–0.8) and
separation impedances are significantly smaller than for the
best possible packed bed (typicallyhmin ∼= 2 and E =
2000–3000). The fact that 2D etched packed bed columns
could yield such small reduced plate height can be attributed
to the perfect homogeneity of the flow-through pore net-
work. This is substantiated by the fact that theB andC terms
are similar to those in 3D packed bed columns, whereas the
A term is about a factor of 10 smaller.

Exploring six different possible characteristic dimension
definitions for their potential to bring the Van Deemter plots
of the three different particle shapes into agreement, none
of them appeared to be valid. This hints at the fact that the
definition of such a “universal” characteristic dimension is
not straightforward, and that simple assumptions such as the
use of an equivalent sphere (or cylinder) diameter based on
an identical flow resistance, an approach which is sometimes
adopted to compare monolithic and packed bed columns,
might not be the ultimate solution.

6. Nomenclature

a specific external pillar surface (a = P /Ap) (m−1)
Adom cross-sectional domain area

(Adom = Ldomddom) (m2)
Af cross-sectional fluid pore area

(Af = εAdom) (m2)
Ap cross-sectional pillar area (m2)
dax maximal pillar dimension in axial direction

(parallel to the flow), seeFig. 1 (m)
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ddom domain size, seeFig. 1 (m)
deq diameter of cylinder with same cross-sectional

area as non-circular pillar, seeEq. (1)(m)
df ,mean mean width of flow-through pores,

seeEq. (2)(m)
df ,min minimal width of flow-through pores,

seeFig. 1 (m)
dFR,eq equivalent cylinder diameter based on the

condition of an identical flow resistance,
seeEq. (17)(m)

dlat maximal pillar dimension in lateral direction
(perpendicular to the flow), seeFig. 1 (m)

dp cylindrical pillar diameter (m)
dref general characteristic pillar dimension (m)
Dm molecular diffusion coefficient in mobile

zone (m2/s)
Dsz molecular diffusion coefficient in stationary

zone (m2/s)
E separation impedance, seeEq. (3)
h reduced theoretical plate height (h = H /dref)
H height equivalent of a theoretical plate (m)
k1, k2 forward and backward rate constant for

adsorption reaction inEq. (6)(s−1)
k′ phase retention factor
k′′ zone retention factor
k′′

0 zone retention factor of unretained species
K adsorption equilibrium constant (K = k1/k2)
Kv column permeability, seeEq. (4)(m2)
Lij distance between two different detection planes

i and j (m)
P pillar circumference (m)
�P pressure drop (Pa)
s side length of hexagons or diamonds (m)
Sp outer pillar surface (considering a

3D pillar) (m2)
tR,i, tR,j mean passage time at detection planes

i and j (s)
um mean velocity of moving fluid= velocity of

non-permeating solute (m/s)
u0 mean velocity of permeating, but non-retained

solute (m/s)
Vf fluid volume (m3)
Vp pillar volume (considering a 3D pillar) (m3)
x axial position in column (m)

Greek letters
ε external column porosity
εint internal porosity of the porous pillars;

εint = 0.5 in the presented calculations

η dynamic viscosity (kg/(m s))
ν reduced fluid velocity, based on

u0 (=u0dp/Dmol)
φ flow resistance factor

Subscripts
cyl cylinder
diam diamond
hex hexagon
max maximum
min minimum
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